Durable, Long-lasting Punches & Punch Blanks

Global leader in providing fabrication and stamping solutions

a MISUMI Group Company

www.daytonlamina.com

TuffPunch[®] Punches and Punch Blanks

Product Applications

Dayton Lamina **TuffPunch® Punches** and **Punch Blanks** are Kommercial quality products manufactured with thicker, larger, and 10° angled diameter heads, and are designed to reduce punch load and significantly lower failure rates when using heavy gauge and high tensile material. (See p. 3 for additional information.) TuffPunch[®] products are well-suited for high-demand industries where frequency and heavierthan-normal impact punching activity occurs and where optimum performance is required.

Dayton's TuffPunch® product line includes: Dayton Jektole® Punches; Regular Punches; Center Dowel Punches; Punch Blanks; and Retainers. Both standard sizes and standard alterations are shown in this catalog.

Minimizes Head Failure

All Dayton TuffPunch[®] products are designed with a 10°-angled head with a diameter equal to the shank diameter (see photo). This design allows the perforating forces to travel up from the shank and completely through the head. This eliminates the lateral shock waves that would otherwise put stress on the outer edge of the head, resulting in frequent failures especially in heavy-duty applications.

> In addition, Dayton TuffPunch[®] products are available in *common shear angle configurations* to reduce

punch load and minimize the risk of slug pulling. Shear angle configurations include: chamfer; conical; double shear; and single shear. For more information, see "Standard Alterations" on p. 9.

Cryogenic Treatment Standard

DayKool[™] (XCR)—a cryogenic steel conditioning process used primarily with hard, thick materials to improve strength, toughness, and dimensional stability—is **standard** on all Dayton TuffPunch[®] products.

The DayKool[™] process utilizes a liquid nitrogen vapor to cool the steel to −184° C (-300° F), which creates metallurgical changes in the structure that disperse carbides throughout the metal. The result: increased wear resistance (finely dispersed carbides provide more evenly distributed wear); less sharpening time; no loss of resistance after sharpening; longer die runs; and less downtime.

Surface Coatings

Punches can be coated to increase material hardness, reduce galling, and improve wear/ and or corrosion resistance.

Surface Treatments

DayTride[®] (XN)—A low temperature, costeffective surface application that treats all exposed surfaces. Provides increased dimensional stability. Ideal for punches and die buttons. Approx. hardness: RC65-73.

XVP—A thin film coating provides superior hardness (harder than carbide). Supersmooth finish on the point helps reduce galling and maintenance. Ideal for higherthan-normal punching frequency.

XPS—Super-smooth polish on the point to reduce galling and improve punch life. Use with the appropriate coating for your application to maximize punch life and reduce maintenance costs. Excellent for extruding applications.

Abrasive Wear

DayTIN[®] (XNT)—Excellent wear resistance and lubricity. Not recommended for stainless steel, copper, or nickel. A good generalpurpose coating. Approx. hardness: *Vickers 2300.

TiCN (XCN)—Ultra-hard (harder than carbide), thin coating. Provides superior abrasive wear resistance and lubricity. A very good general-purpose coating for all materials. Upgrade over XNT. Approx. hardness: *Vickers 3000.

DayTAN™ (XAN)—Ultra-hard (harder than carbide), high-aluminum coating. Provides high temperature resistance. Well-suited for applications where surface heat is generated. Ideal for HSLA, dual phase, and TRIP steels. Upgrade over XCN. Approx. hardness: *Vickers 3400.

ZertonPlus[™] (XNA)—Superior hardness (harder than carbide); provides superior abrasive wear resistance and excellent lubricity. Provides highest temperature resistance, thermal shock stability, & hot hardness. Approx. hardness: *Vickers 3200.

Adhesive Wear

XNM—A solid lubricant coating. Provides both lubricity and wear resistance not available from other PVD or CVD processes. Ideal for aluminum, copper, pre-painted, and galvanized steels. Approx. hardness: *Vickers 2000.

XCD—Diamond-like carbon coating. Combines high hardness with an extremely low coefficient of friction. Good protection against abrasive and adhesive wear. Ideal for aluminum. Approx. hardness: *Vickers 5000.

XCDH—Super-smooth finish combined with advanced DLC coating for a very low coefficient of friction with extremely high wear resistance. Approx. hardness: *Vickers 5000.

XCDP—Super-smooth finish combined with a DLC coating for a very low coefficient of friction with high wear resistance. Excellent for stamping aluminum. Approx. Hardness: Vickers 2800.

Extrusion Coatings

XNP—The ultimate coating for improved resistance to galling; excellent wear resistance, superior surface finish, and high lubricity. Ideal for extruding and forming applications. Tolerance is ±.005 mm. Approx. hardness: *Vickers 3100.

XNAProgress (XNAP)—Ultra-hard coating that absorbs shear stress; provides excellent high-temperature resistance. Ideal for stamping where tools are exposed to extreme stress profiles. A good alternative to TD coating without the dimensional changes associated with that process. Approx hardness: *Vickers 3200.

Miscellaneous Coating

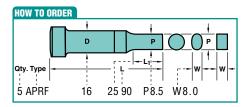
CRN—Excellent adhesion, high toughness, and good corrosion resistance. Primary applications are metal forming (copper, brass, & bronze), metal die casting, and plastic injection molding. Approx. hardness: *Vickers 1800-2100.

*Vickers used when RC exceeds 80. TuffPunch®, DayKool™, DayTAN[™], ZertonPlus[™], Daytride® and DAYTiN® are trademarks of Dayton Lamina Corp.

Ordering Information

Center Dowel Punches & Retainers

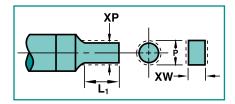
This catalog contains Center Dowel Punches (Jektole[®] and Regular) and TuffPunch[®] Single Head Punch Retainers, designed specifically to



be used with all TuffPunch[®] punches. Only one dowel is required for round punches, reducing machining time by us to 50%. The in-line center dowel assures precise punchto-matrix alignment, giving you higher quality parts, longer punch life, and reduced downtime. Shaped punches use a secondary dowel for precise alignment.

Use of the TuffPunch[®] Center Dowel Punch and Retainer eliminate hand-fitting, cutting mounting time by nearly 50%. Simply pull the retainer from its box, and screw it into the die set. This heads-above-the-rest TuffPunch[®] combination gives you true dimensional accuracy every time.

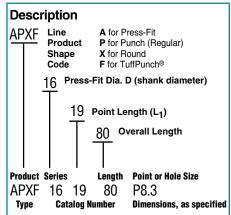
Ordering Information


Each page contains detailed instructions on how to order specific Dayton TuffPunch® products. Individual drawings show product shape, dimensions, tolerances, and concentricity. When ordering, you are asked to specify quantity, type, shank and length codes (for example), and other applicable data.

In the example above, the type specified is "APRF." "A" stands for Press-Fit, "P" stands for regular punch, "R" stands for rectangle, and "F" stands for TuffPunch®. 16 is the shank diameter. 25 is the point length, and 90 is the overall length. P 8.5 represents the point dimension, and W 8.0 represents the point width, when applicable.

Standard Alterations

Punches, retainers, and punch blanks are available in sizes other than those listed in the catalog. These special order products can be manufactured for a slight additional charge.



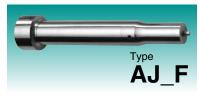
When ordering, you are asked to specify different designations for various non-standard dimensions. For example, if the P & W dimensions are smaller than standard, an "X" must be placed in front of the P or W dimension, e.g., "XP" and "XW." If the point length is longer than standard, designate "XBR" for the point length. The sample drawing above is from the "Standard Alterations" section on p. 9.

Other special order designations include: "XL" for overall length shortened; "XK" for no side hole and no components (for air ejection of slugs); and other special designations for surface coatings.

Product Designation

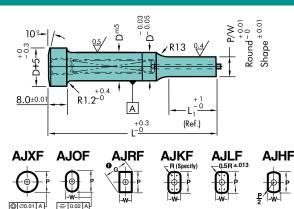
When ordering, you are asked to specify quantity, product type, length codes, and point or hole size (for example). In addition, use the following chart to define the product as a part number.

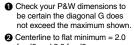
Jektole® Punches and Clearances


Jektole®—Dayton's slug ejection punch permits doubling punch to matrix clearance; produces up to three times the number of hits between sharpenings; and reduces burr heights. Jektole® is available in TuffPunch® Punches and Punch Blanks. For additional information on standard sizes and standard alterations, see pp. 4 and 9.

Special Features

There are several features that contribute to minimizing failures. In addition to the head design and large fillet under the head, all punch shapes with sharp corners will have a carefully blended radius ground to reduce loading on the punch. The reduced load and standard cryogenic treatment result in fewer punch point problems caused by chipping, wear, or breakage.

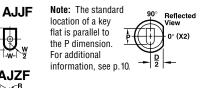

TuffPunch[®] Jektole[®] Punches



Material Steel: PS4 (CPM M4), RC 60-62

4

Heads RC 40-55



for J6 and 3.0 for J9.

Note: Sharp corners will have a 0.13 radius to minimize wear

Shank	Point	Length L ₁	Type & D	Range	Type & D	Min.	Max.							Jektole®
D	Std.		AJXF	P	AJ_F	W	P/G	50	60	70	80	90	100	Group
08	13	19	AJXF 08	4.00 - 7.99	AJ_F 08	4.00 -	- 8.00		•	•	•	•	•	J4M
10	13	19	AJXF 10	5.00 - 9.99	AJ_F 10	5.00-	10.00		•	•	•	•	•	J6M
13	13	19	AJXF 13	6.00–12.99	AJ_F 13	6.00-	13.00		•	•	•	•	•	J6M
16	19	25	AJXF 16	10.00–15.99	AJ_F 16	6.00-	16.00			•	•	•	•	J9M
20	19	25	AJXF 20	13.00–19.99	AJ_F 20	6.00-2	20.00	•		•	•	•	•	J9M
25	19	25	AJXF 25	18.00–24.99	AJ_F 25	6.00-2	25.00			•	•	•	•	J9M

D Code L

16

16

16

19-80

25-80

19-90

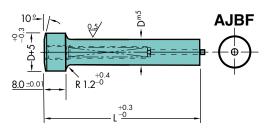
P (or P&W) Dimension

P 10.2, W 7.2

P 10.3 P 10.5, W 8.0

Standard Alterations See p.9 for additional ordering instructions.

Note: DayKool[™] (XCR)—a cryogenic steel conditioning process used primarily with hard, thick materials to improve strength, toughness, and dimensional stability—is standard on all Dayton TuffPunch® products. For additional information, see p. 2.


When L = 50, L₁ is 8.0.

Alternate point length not available.

TuffPunch[®] Jektole[®] Punch Blanks

Material Steel: PS4 (CPM M4), RC 60-62 Heads RC 40-55

Jektole® side hole position allows alternate point lengths shown on AJ_F above.

Shank	Catalog		L								
D	Number	50	60	70	80	90	100	Group			
08	AJBF 08	•	•	•	•	•	•	J4M			
10	AJBF 10	•	•	•	•	•	•	J6M			
13	AJBF 13	•	•	•	•	•	•	J6M			
16	AJBF 16	•	•	•	•	•	•	J9M			
20	AJBF 20		•	•	•	•	•	J9M			
25	AJBF 25		•	•	•	•	•	J9M			

Note: DayKoolTM (XCR)—a cryogenic steel conditioning process used primarily with hard, thick materials to improve strength, toughness, and dimensional stability—is standard on all Dayton TuffPunch® products. For additional information, see p. 2.

HOW TO ORDER	
NOW TO UNDER	

HOW TO ORDER

Example: 6

AJZF

AJYF

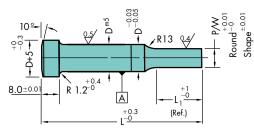
Specify: Qty. Type

12 AJRF

10 AJLF

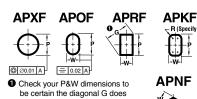
AJXF

Specify:	Qty.	Туре	D Code	L
Example:		AJBF	20	80

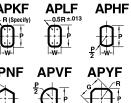

Standard Alterations See p.9 for additional ordering instructions.

TuffPunch[®] Regular Punches

Material


Steel: PS4 (CPM M4), RC 60-62 Heads RC 40-55

HOW TO ORDER


APJF

1001100		•			
Specify:	Qty.	Туре	D Code	L	P (or P&W) Dimension
Example:	6	APXF	16	19-80	P 10.3
	12	APRF	16	25-80	P 10.5, W 8.0
	10	APLF	16	19-70	P 10.2, W 7.2

not exceed the maximum shown.

Note: Sharp corners will have a 0.13 radius to minimize wear.

Note: The standard	90° Reflected
location of a key	View
flat is parallel to	p ((X2)
the P dimension.	
For additional	$\mathbf{\mathbf{\nabla}}$
information, see p.10	

Standard Alterations See p.9 for additional ordering instructions.

Shank	k Point Length L1		Type & D	Range	Type & D	Min. Max.	L						
D	Std.	Alt.	APXF	P	AP_F	W P/G	50	60	70	80	90	100	
08	13	19	APXF 08	3.00 – 7.99	AP_F 08	3.00 - 8.00		•	•	•	•	•	
10	13	19	APXF 10	3.00 – 9.99	AP_F 10	3.00-10.00		•	•	•	•	•	
13	13	19	APXF 13	6.00–12.99	AP_F 13	3.00-13.00		•	•	•	•	•	
16	19	25	APXF 16	10.00–15.99	AP_F 16	4.00-16.00			•	•	•	•	
20	19	25	APXF 20	13.00–19.99	AP_F 20	5.00-20.00			•	•	٠	•	
25	19	25	APXF 25	18.00–24.99	AP_F 25	6.00–25.00			•	•	•	•	

Note: *DayKool[™] (XCR)*—a cryogenic steel conditioning process used primarily with hard, thick materials to improve strength, toughness, and dimensional stability—is standard on all Dayton TuffPunch[®] products. For additional information, see p. 2.

When L = 50, L₁ is 8.0.

Alternate point length not available.

TuffPunch[®] Regular Punch Blanks

Material Steel: PS4 (CPM M4), RC 60-62 Heads RC 40-55

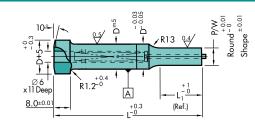
	0.5	+ D ^{m5}	APBF
-D+5 -0			
<u>8.0±0.01</u>	R1.2 ^{+0.4}	ł	
	L ^{+0.}	3	
▁▁▎▁▁	+0.	3	

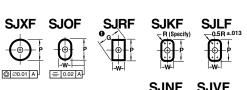
Shank	Catalog		L								
D	Number	50	60	70	80	90	100				
08	APBF 08	•	•	•	•	•	•				
10	APBF 10	•	•	•	•	•	•				
13	APBF 13	•	•	•	•	•	•				
16	APBF 16	•	•	•	•	•	•				
20	APBF 20		•	•	•	•	•				
25	APBF 25		•	•	•	•	•				

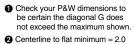
Note: *DayKool[™] (XCR)*—a cryogenic steel conditioning process used primarily with hard, thick materials to improve strength, toughness, and dimensional stability—is standard on all Dayton TuffPunch[®] products. For additional information, see p. 2.

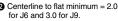
Specify:	Qty.	Туре	D Code	L
Specify: Example:	6	APBF	20	80

Standard Alterations See p.9 for additional ordering instructions.


TuffPunch[®] Jektole[®] Center Dowel Punches



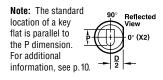

Material


6

Steel: PS4 (CPM M4), RC 60-62 Heads RC 40-55

Note: Sharp corners will have a 0.13 radius to minimize wear

Shank	Point Length L ₁ Type & D		Range	Range Type & D		Max.							Jektole®	
D	Std.		SJXF	P	SJ_F	Min. W	P/G	80	90	100	110	120	130	
10	13	19	SJXF 10	5.0 – 9.99	SJ_F 10	5.00-1	0.00	•	٠	•	٠	•	•	J6M
13	13	19	SJXF 13	6.0–12.99	SJ_F 13	6.00–1	3.00	•	•	•	•	•	•	J6M
16	19	25	SJXF 16	10.0–15.99	SJ_F 16	6.00–1	6.00	•	٠	•	•	•	•	J9M
20	19	25	SJXF 20	13.0–19.99	SJ_F 20	6.00–2	0.00	•	٠	•	•	•	•	J9M
25	19	25	SJXF 25	18.0-24.99	SJ_F 25	6.00–2	5.00	•	•	•	•	•	•	J9M
32	19	25	SJXF 32	20.0-31.99	SJ_F 32	6.00–3	2.00	•	٠	•	•	•	•	J9M
38	19	25	SJXF 38	28.0-37.99	SJ_F 38	6.00–3	8.00	•	•	•	•	•	•	J9M
45	19	25	SJXF 45	35.0-44.99	SJ_F 45	6.00–4	5.00	•	•	•	•	•	•	J9M

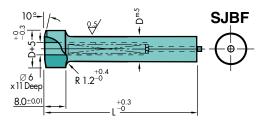

SJJF

SJZF

SJHF

SJYF

	III C LII				
Specify:	Qty.	Туре	D Code	L	P (or P&W) Dimension
Example:	10	SJXF	20	80	P 13.3
	10	SJRF	25	80	P 14.5, W 8.0
	16	SJLF	20	90	P 13.2, W 7.2


Standard Alterations See p.9 for additional ordering instructions.

Note: DayKool™ (XCR)—a cryogenic steel conditioning process used primarily with hard, thick materials to improve strength, toughness, and dimensional stability-is standard on all Dayton TuffPunch® products. For additional information, see p. 2.

TuffPunch[®] Jektole[®] Center Dowel Blanks

Material Steel: PS4 (CPM M4), RC 60-62 Heads RC 40-55

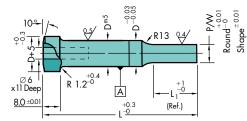
Jektole® side hole position allows alternate point length shown on SJ_F above.

Shank	Catalog				L			Jektole ®
D	Number	80	90	100	110	120	130	Group
10	SJBF 10	•	•	•	•	•	•	J6M
13	SJBF 13	•	•	•	•	•	•	J6M
16	SJBF 16	•	•	•	•	•	•	J9M
20	SJBF 20	•	•	•	•	•	•	J9M
25	SJBF 25	•	•	•	•	•	•	J9M
32	SJBF 32	•	•	•	•	•	•	J9M
38	SJBF 38	•	•	•	•	•	•	J9M
45	SJBF 45	•	•	•	•	•	•	J9M

Note: DayKoolTM (XCR)-a cryogenic steel conditioning process used primarily with hard, thick materials to improve strength, toughness, and dimensional stability—is standard on all Dayton TuffPunch® products. For additional information, see p. 2.

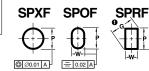
	_
HOW TO ORDER	

Specify:	Qty.	Туре	D Code	L
Example:	9	SJBF	38	120


Standard Alterations See p.9 for additional ordering instructions.

TuffPunch[®] Regular Center Dowel Punches

Material


Steel: PS4 (CPM M4), RC 60-62 Heads RC 40-55

SPJF

HOW TO ORDER	1			
Specify: Qty.	Туре	D Code	L	P (or P&W) Dimension
Example: 10	SPXF	20	90	P 13.3
. 16	SPRF	25	80	P 19.5, W 9.0
16	SPLF	20	90	P 13.2, W 7.2

Check your P&W dimensions to be certain the diagonal G does not exceed the maximum shown. Note: Sharp corners will have a 0.13

	<u>P</u> -w-
SPNF	SPYF G W R=G 2

SPLF

SPHF

SPKF

R (S ecify)

Note: The standard location of a key flat is parallel to the P dimension. For additional	P C		Reflected View - 0° (X2)
For additional information, see p.1	0	<u>D</u> 2	-

Standard Alterations See p.9 for additional ordering instructions.

Shank	Point Le	nath L₁	Type & D	Range	Type & D	Min. M	ax.			L			
D	Std.	Alt.	SPXF	P	SP_F	W P/	-	80	90	100	110	120	130
10	13	19	SPXF 10	3.00 – 9.99	SP_F 10	3.00–10.	00	•	•	•	•	•	•
13	13	19	SPXF 13	6.00–12.99	SP_F 13	3.00–13.	00	•	•	•	•	•	•
16	19	25	SPXF 16	10.00–15.99	SP_F 16	4.00–16.	00	•	•	•	•	•	•
20	19	25	SPXF 20	13.00–19.99	SP_F 20	5.00–20.	00	•	•	•	•	•	•
25	19	25	SPXF 25	18.00–24.99	SP_F 25	6.00–25.	00	•	•	•	•	•	•
32	19	25	SPXF 32	20.00–31.99	SP_F 32	6.00–25.	00	•	٠	•	•	•	•
38	19	25	SPXF 38	28.00–37.99	SP_F 38	6.00–25.	00	•	٠	•	•	•	•
45	19	25	SPXF 45	35.00–44.99	SP_F 45	6.00–25.	00	•	•	•	•	•	•

Note: DayKoolTM (XCR)-a cryogenic steel conditioning process used primarily with hard, thick materials to improve strength, toughness, and dimensional stability-is standard on all Dayton TuffPunch® products. For additional information, see p. 2.

TuffPunch[®] Regular Center Dowel Blanks

D^{m5} SPBF 10-0.5 0 R1.2⁻⁰ Ø6 I x11 Deep 8.0±0.01 +0.3

HOW TO O	NVEN			
Specify: Example:	Qty.	Туре	D Code	L
Example:	6	SPBF	25	110

Material Steel: PS4 (CPM M4), RC 60-62 Heads RC 40-55

Shank	Catalog				L		
D	Number	80	90	100	110	120	130
10	SPBF 10	•	•	•	•	•	•
13	SPBF 13	•	•	•	•	•	•
16	SPBF 16	•	•	•	•	•	•
20	SPBF 20	•	•	•	•	•	•
25	SPBF 25	•	•	•	•	•	•
32	SPBF 32	•	•	•	•	•	•
38	SPBF 38	•	•	•	•	•	•
45	SPBF 45	•	•	•	•	•	•

Note: DayKoolTM (XCR)-a cryogenic steel conditioning process used primarily with hard, thick materials to improve strength, toughness, and dimensional stability-is standard on all Dayton TuffPunch® products. For additional information, see p. 2.

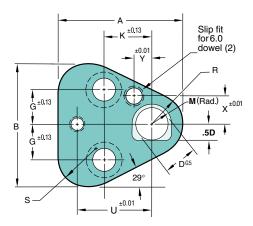
pecify:	Qty.	Туре	D Code	L	
OW TO O	RDER				

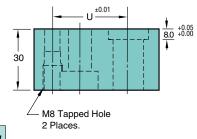
Standard Alterations

See p.9 for additional ordering instructions.

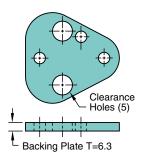
7

TuffPunch[®] Single Head Retainers




ARTF and ARTFS TuffPunch®

Retainer sets include:


2 Screws2 Dowels

B (1,1) (2

HOW TO ORDE	R			
Specify:	Qty.	Туре	D	
Example:	4	ARTF	10	
	6	ARTFS	25	

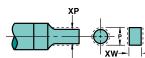
Backing Plate					
D	Catalog No.				
10	URBP 10 63				
13	URBP 13 63				
16	URBP 16 63				
20	URBP 20 63				
25	URBP 25 63				

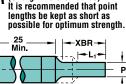
Catalog	j No.				ARTF			ARTFS						Screw
Туре	Code	D	Α	В	Н	G	K	М	R	S	U	X	Y	Size
	10	10.00	44.5	43.7	15.5	11.1	19.0	7.75	9.5	12.0	26.925	9.0	7.5	M8
ARTE	13	13.00	50.8	50.0	18.5	14.3	19.0	9.25	12.7	15.2	29.970	12.0	6.5	M8
ARTES	16	16.00	54.0	53.2	21.5	15.9	19.0	10.75	14.3	16.8	31.750	13.5	6.0	M8
ANIFS	20	20.00	60.3	59.5	25.5	17.5	19.0	12.75	17.5	20.0	33.530	16.5	5.0	M10
	25	25.00	69.9	69.1	30.5	19.8	23.8	15.25	22.2	24.7	40.640	22.0	7.0	M12

Features/Benefits

TuffPunch[®] ARTF and ARTFS Single Head Punch Retainers are designed specifically for use with TuffPunch[®] Punches—Jektole[®] and Regular. Only one dowel is required for round punches, reducing machining time by up to 50%. The in-line center dowel assures precise punch-to-matrix alignment, giving you higher quality parts, longer punch life, and reduced downtime. Shaped punches use a secondary dowel for precise alignment.

Use of the TuffPunch[®] Center Dowel Punch and Retainer also eliminates hand-fitting, cutting mounting time by nearly 50%. Simply pull the retainer from its box, and screw it into the die set. This TuffPunch[®] combination gives you true dimensional accuracy every time.

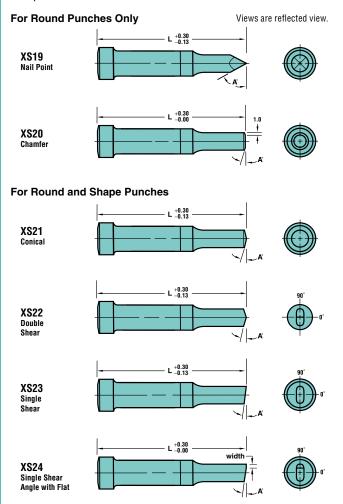

Standard Alterations


Punches are available in sizes other than those listed on the individual product pages.

Jektole[®], Regular, and Center Dowel

XBR (Straight Before Radius) It is recommended that point lengths be kept as short as

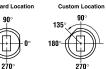
	Max. 🕨	8	13	19	25	30	35	40	Jektole Group
Code	Туре	0.0	0.0		(Rounds)				1484
08	AJXF APXF	3.0 1.5	3.0 1.5	3.0 1.5	4.0 2.0	5.0 2.0	2.0	4.0	J4M
10	AJXF	4.0	4.0	4.0	4.0	5.0	5.0		J6M
	APXF	1.5	1.5	1.5	2.0	2.0	2.0	2.0	
	SJXF SPXF	4.0 1.5	4.0 1.5	4.0 1.5	4.0 2.0	5.0 2.0	5.0 2.0	6.0 4.0	J6M
13	AJXF	4.0	4.0	4.0	4.0	5.0	5.0		J6M
	APXF SJXF	3.0	3.0 4.0	3.0 4.0	3.0 4.0	3.0 5.0	3.0 5.0	4.0 6.0	J6M
	SPXF	3.0	3.0	3.0	3.0	3.0	3.0	4.0	
16	AJXF	6.0	6.0	6.0	6.0	6.0	6.0		J9M
	APXF SJXF	5.0	5.0 6.0	5.0 6.0	5.0 6.0	5.0 6.0	5.0 6.0	5.0 6.0	J9N
	SPXF	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
20	AJXF	6.0	6.0	6.0	6.0	6.0	6.0	 G E	J9M
	APXF SJXF	6.0	6.0 6.0	6.0 6.0	6.0 6.0	6.5 7.6	6.5 7.6	6.5 7.6	J9M
	SPXF	6.0	6.0	6.0	6.0	6.5	6.5	6.5	
25	AJXF APXF	8.0 8.0	8.0 8.0	8.0 8.0	8.0 8.0	8.0 9.0	8.0 9.0	9.0	J9M
	SJXF		8.0	8.0	8.0	10.0	10.0	10.0	J9N
	SPXF	8.0	8.0	8.0	8.0	9.0	9.0	9.0	
32	SJXF SPXF	8.0	10.0 8.0	10.0 8.0	10.0 8.0	10.0 9.0	10.0 9.0	10.0 9.0	J9M
38	SJXF SPXF	8.0	10.0 8.0	10.0 8.0	10.0 8.0	10.0 9.0	10.0 9.0	10.0 9.0	J9M
45	SJXF	0.0	10.0	10.0	10.0	10.0	10.0	10.0	J9M
	SPXF	8.0	8.0	8.0	8.0	9.0	9.0	9.0	
L ₁ M	ax. 🕨	8	13	19	25	30	35	40	Jektol Groun
L ₁ M D Code	ax. 🕨	8	-	19 Min. P (St	-	30	35	40	Jektol Group
-	Type AJ F	3.0	3.0	Min. P (S ł 3.0	apes) 4.0	4.0			
D Code 08	Type AJF APF	3.0 1.0	3.0 1.5	Min. P (Sr 3.0 3.0	4.0 3.0	4.0 4.0	5.0		Group J4M
D Code	Type AJF APF AJF AJF AP F	3.0 1.0 4.0 1.25	3.0 1.5 4.0 1.5	Min. P (St 3.0 3.0 4.0 3.0	4.0 3.0 4.0 3.0	4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0		Group J4M J6M
D Code 08	Type AJ_F AP_F AJ_F AJ_F SJ_F	3.0 1.0 4.0 1.25 4.0	3.0 1.5 4.0 1.5 4.0	Min. P (St 3.0 3.0 4.0 3.0 4.0	4.0 3.0 4.0 3.0 4.0 3.0 4.0	4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5	 6.0	Group J4M J6M J6M
08 08 10	Type AJ_F AP_F AJ_F SP_F SP_F	3.0 1.0 4.0 1.25 4.0 1.25	3.0 1.5 4.0 1.5 4.0 1.5	Min. P (St 3.0 3.0 4.0 3.0 4.0 3.0 3.0	4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 5.0	 6.0	Group J4M J6M J6M
D Code 08	Type AJF APF AJF SJF SPF AJF APF	3.0 1.0 4.0 1.25 4.0	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5	Min. P (St 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0	4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0	 6.0 	Group J4M J6M J6M
08 08 10	Type AJF APF AJF APF SJF SPF AJF APF SJF SJF SJF SJF SJF SJF	3.0 1.0 4.0 1.25 4.0 1.25 4.0 1.25 4.0 1.5	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0	Min. P (St 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0	4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 4.5	 6.0 	Group J4M J6M J6M
08 08 10	Type AJF APF AJF SJF SPF AJF APF	3.0 1.0 4.0 1.25 4.0 1.25 4.0	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5	Min. P (St 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0	4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0	 6.0 6.0	Group J4M J6M J6M J6M
08 08 10 13	Type AJF APF AJ_F AP_F SJ_F SP_F AJ_F AP_F SSP_F AP_F AJ_F AP_F SJ_F SP_F	3.0 1.0 4.0 1.25 4.0 1.25 4.0 1.5 1.5	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0	Min. P (St 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0	4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0	 6.0 6.0 	Group J4M J6M J6M J6M J9M
0 Code 08 10 13	Type AJF APF AJ_F SPF AJ_F SPF AJ_F AP_F SJ_F SP_F AJ_F AP_F SJ_F SP_F AJ_F AP_F SJ_F SP_F	3.0 1.0 1.25 4.0 1.25 4.0 1.25 4.0 1.5 1.5 6.0	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0	Min. P (Si 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0	appes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 4.5 5.0 6.0	 6.0 6.0	Group J4M J6M J6M J6M
0 Code 08 10 13	Type AJ F AP F AJ F	3.0 1.0 4.0 1.25 4.0 1.25 4.0 1.5 1.5 6.0 2.0	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0 6.0 2.0 6.0	Min. P (St 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0 6.0	appes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0	 6.0 6.0 6.0 6.0	Group J4M J6M J6M J6M J9M J9M
08 08 10 13 16	Type AJ F AP F AJ F	3.0 1.0 1.25 4.0 1.25 4.0 1.5 1.5 6.0 2.0 2.0	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0 6.0 2.0 6.0	Min. P (St 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0 6.0	appes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 6.0 6.0 6.0 6.0 6.0 6.0	 6.0 6.0 6.0 	Group J4M J6M J6M J6M J9M J9M
08 08 10 13 16	Type AJ F AP F AJ F	3.0 1.0 1.25 4.0 1.25 4.0 1.5 1.5 6.0 2.0 2.0 6.0	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0 6.0 2.0	Min. P (Sr 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0	Alog 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0 3.5	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 5.0 5.0 4.5 5.0 4.5 5.0 6.0 6.0 6.0 6.0 6.0	 6.0 6.0 6.0 6.0	Group J4M J6M J6M J6M J9M J9M
08 08 10 13 16	Type AJ F AP F AJ F AJ F SP F AJ F	3.0 1.0 4.0 1.25 4.0 1.25 4.0 1.5 	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0 6.0 2.5 6.0 2.5 6.0	Min. P (Si 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	Aapes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0	$\begin{array}{c} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\$	$\begin{array}{c}\\ 5.0\\ 5.0\\ 5.0\\ 4.5\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 4.5\\ 5.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6$	 6.0 6.0 6.0 6.0 6.0 6.0 	Group J4M J6M J6M J6M J9M J9M J9M J9M J9M
0 Code 08 10 13 16 20	Type AJ F AP F AP F SP F AJ F AJ F AJ F AJ F AP F SP F AJ F AD F SJ F SJ F SJ F SJ F SJ F AD F AJ F AD F SJ F AD F	3.0 1.0 1.25 4.0 1.25 4.0 1.25 1.5 6.0 2.0 6.0 2.5 2.5	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 0.2.0 6.0 2.0 6.0 2.5 6.0 2.5 6.0 2.5 6.0 3.0	Min. P (Si 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 3.0 6.0 3.0 3.0 6.0 3.0 3.0 6.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	appes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5	$\begin{array}{c} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\$	$\begin{array}{c}\\ 5.0\\ 5.0\\ 5.0\\ 4.5\\ 5.0\\ 5.0\\ 5.0\\ 4.5\\ 5.0\\ 4.5\\ 5.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6$	 6.0 6.0 6.0 6.0 6.0	Group J4M J6M J6M J6M J9M J9M J9M J9M
0 Code 08 10 13 16 20	Type AJ F AP F AJ F AJ F SP F AJ F	3.0 1.0 4.0 1.25 4.0 1.25 4.0 1.5 	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0 6.0 2.5 6.0 2.5 6.0	Min. P (Si 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	Aapes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0	$\begin{array}{c} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\$	$\begin{array}{c}\\ 5.0\\ 5.0\\ 5.0\\ 4.5\\ 5.0\\ 5.0\\ 5.0\\ 5.0\\ 4.5\\ 5.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6.0\\ 6$	 6.0 6.0 6.0 6.0 6.0 6.0 	Group J4M J6M J6M J6M J9M J9M J9M J9M J9M
0 Code 08 10 13 16 20	Type AJ F AP F AP F SP F AJ F AJ F SP F AJ F SP F SP F AJ F AJ F AJ F SP F SP F SP F SD F SJ	3.0 1.0 4.0 1.25 4.0 1.25 4.0 1.5 2.0 6.0 2.0 2.5 6.0 3.0 	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0 6.0 2.0 6.0 2.5 6.0 2.5 6.0 3.0 6.0 3.0 6.0 3.0 7.2	Min. P (Si 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 7.2	appes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 8.0 7.2	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	 6.0 6.0 6.0 6.0 6.0	J4M J4M J6M J6M J6M J6M J6M J9M J9M J9M J9M J9M J9M
O Code 08 10 13 16 20 25	Type AJ F AP F AP F SP F AJ F AJ F SP F AJ F AJ F SP F AJ F SP F AJ F SP F AJ F AJ F SP F	3.0 1.0 4.0 1.25 4.0 1.25 4.0 1.5 6.0 2.0 6.0 2.5 6.0 2.5 6.0 3.0 8.0	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0 6.0 2.0 6.0 2.5 6.0 2.5 6.0 3.0 6.0 3.0 6.0 3.0 7.2 3.0	Min. P (Si 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 7.2 3.0	apes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5	$\begin{array}{c} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\$	$\begin{array}{c} \hline 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 6.0$	 6.0 6.0 6.0 6.0 6.0 9.0 7.2 	Group J4M J6M J6M J6M J6M J6M J6M J6M J9M J9M J9M J9M J9M J9M J9M J9M
D Code 08 10 13 16 20 25 32	Type AJ_F AP_F AJ_F AP_F SJ_F SP_F AJ_F AP_F SP_F AJ_F AP_F SP_F AJ_F AP_F SP_F AJ_F AP_F SP_F AP_F SJ_F SP_F	3.0 1.0 4.0 1.25 4.0 1.25 4.0 1.5 2.0 6.0 2.0 2.5 6.0 3.0 	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0 6.0 2.0 6.0 2.5 6.0 2.5 6.0 3.0 6.0 3.0 6.0 3.0 7.2	Min. P (SP 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 7.2 3.0 7.2 3.0	appes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 8.0 7.2	$\begin{array}{c} 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\ 4.0\\$	$\begin{array}{c} \hline 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 5.0 \\ 6.0 \\ 7.2 \\ 6.0 \\ 7.2 \\ 6.0 \end{array}$	 6.0 6.0 6.0 6.0 9.0	Group J4M J6M J6M J6M J6M J6M J9M J9M J9M J9M J9M J9M J9M J9M J9M J9
O Code 08 10 13 16 20 25 32	Type AJ F AP F AP F SP F AJ F AJ F AJ F AJ F AP F SP F AJ F AP F SP F AP F SJ F	3.0 1.0 4.0 1.25 4.0 1.25 4.0 1.5 6.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0	3.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 4.0 1.5 6.0 2.0 6.0 2.0 6.0 2.5 6.0 2.5 6.0 2.5 6.0 3.0 6.0 2.5 6.0 3.0 7.2 3.0	Min. P (Si 3.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 6.0 3.0 7.2 3.0	appes) 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 4.0 3.0 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5 6.0 3.5	4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0	5.0 5.0 5.0 4.5 5.0 5.0 4.5 5.0 4.5 5.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	 6.0 6.0 6.0 6.0 6.0 9.0 7.2 	Group J4M J6M J6M J6M J6M J6M J9M J9M J9M J9M J9M J9M J9M J9M J9M J9


Note: For surface coatings information, see p. 2 and the individual product pages.

Shear Angles (XS)

TuffPunch® products are available in common shear angle configurations for all standard shapes. Shear angles are also available for classified shapes as special orders.

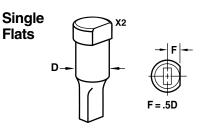
Shear angles are available in any angle. Specify angle in whole degrees. If half degree is necessary, specify as a decimal, e.g., 8.5°. (Tolerance on all angles is ±15 minutes.) Use the chart below to determine the product designation, then simply add the alteration code shown next to the drawings, along with the angle desired. Example: APXF 16-90-80 P 8.3 XS20 A5°.



Locking Devices—Flats vs. Dowel Slots

Orientation

10


The standard location for all locking devices is 0°, and is always

on the long side (P) All views are reflected views

of the shape. Custom

locations are measured counterclockwise from 0°.

Standard and Alternate Locations

Definitions: Standard Location is at 0°. Alternate Location is 90°, 180°, or 270°. Alternate locations are available at no additional charge.

Custom Locations

Definitions: Custom Location is any angle other than: 0°, 90°, 180°, or 270°.

Single Flats: X2

Order Example: X2 — 90°

Single Flats: X5

Order Example: X5 — 135°

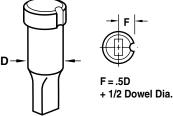
Double ХЗ Flats D F = .5D F dimension views are relected views (looking down from top of punch)

Additional Flats

The depth of the flat is taken from the shank, not the head, on punches.

Double	Flats:	Х3
--------	--------	----

Locking Devices: X3 Order Example: X3 — 90° Second Flat is always parallel to the first flat.


Additional Flats								
Code	Depth	Length						
X81	1.5	13						
X82	1.5	16						
X83	1.5	20						
X84	1.5	Full Length						
X85	2.5	13						
X86	2.5	16						
X87	2.5	20						
X88	2.5	Full Length						
X89	X89 Specify Dimensions							

Double Flats: X6 Locking Devices: X6

Order Example: X6 - 135°

Additional Flats						
Code	Depth	Length				
X91	1.5	13				
X92	1.5	16				
X93	1.5	20				
X94	1.5	Full Length				
X95	2.5	13				
X96	2.5	16				
X97	2.5	20				
X98	2.5	Full Length				
X99	Specify	y Dimensions				

Dowel	
Slots	

Dowel Slots: X4 & X41

For standard locations, specify X4 (3.0 Dowel) or X41 (4.0 Dowel). For alternate locations, specify X4 or X41 and degree required.

Order Example: X4 – 90°

Dowel Slots: X7 & X71

Specify X7 (3.0 Dowel) or X71 (4.0 Dowel). For custom locations, specify X7 or X71 and degree required.

Order Example: X71 — 135°

Location Tolerance Flat Dowel Radial Radial F E + 0.013 - 0.0 + 0.013 - 0.0 .025/25.0

inch

0°4

How To Specify

The most common locking devicesflat, double flat, and dowel-are available. Simply select the type, then add the code to the component description.

HOW TO ORDER

Specify: Qt	y. Type	D Code	L	P (or P&W) Dimension	Locking Device
Example: 1	AJRF	16	25-80	P8.5, W.8.0	X2

Ball Lock Punches, Matrixes, Pilots, & Retainers

Dayton *Ball Lock Products* are mainstays in industries with high-demand applications, including automotive and major appliance manufacturing. Because there is no need to pull a die from the press, removal and replacement of worn punches can reduce downtime and improve profitability.

Dayton *True Position[®] Retainers* (the recognized industry standard) eliminate hand fitting, reduce mounting time, and are ideally suited for both round and complex-shaped products. True Position[®] allows easy replacement of broken or worn punches.

MaxLife[®] Die Springs

Dayton *MaxLife® Die Springs* are: made to exact specifications; manufactured to outperform and outlast other major brands; designed specifically for press and mold dies; and ensure optimum operation in heavy industry applications. Corrosion-resistant Dayton die springs are made from pre-tempered chrome silicon wire, and optimize the working life of press and mold dies.

Urethane Stripping & Forming Products

Durable, yet flexible, Dayton urethane strippers and forming products provide superior stripping over conventional strippers; develop higher load-bearing capacity; are tearand oil-resistant; provide exceptional dampening; and are easy to install and replace.

Dayton dual durometer *SMARTStrip*[™] *Strippers* (two elastomers molded into a single piece) are a cost-effective alternative to metal spring strippers.

Dayton provides a full range of leading-edge die component products: headed punches, guides, and matrixes; positive-locking Ball Lock products; retainers; slug-ejection punches; retaining systems; die springs; and others. For details, contact Dayton Lamina or your nearest Dayton Lamina Distributor.

 $^{\textcircled{B}}$ True Position and MaxLife are registered trademarks of Dayton Lamina. TM SMARTStrip is a trademark of Dayton Lamina.

Commitment to Quality & Customer Satisfaction

Dayton Lamina is a leading manufacturer of tool, die and mold components for the metal-working and plastics industries. As a customer-focused, world-class supplier of choice, we provide the brands, product breadth, distribution network and technical support for all your metal forming needs.

Our goal is to give our customers the most innovative and valueadded products and services.

DAYTON Lamina[™]

a MISUMI Group Company

*Dayton Lamina's line of Danly products is available only to North America.

www.daytonlamina.com